博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
B树、B-树、B+树、B*树都是什么(转)
阅读量:5742 次
发布时间:2019-06-18

本文共 2197 字,大约阅读时间需要 7 分钟。

B树
       即二叉搜索树:
       1.所有非叶子结点至多拥有两个儿子(Left和Right);
       2.所有结点存储一个关键字;
       3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
       如:
       
       B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
       如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
       如:
      
    但B树在经过多次插入与删除后,有可能导致不同的结构:
   右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;      
       实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;
B-树
       是一种多路搜索树(并不是二叉的):
       1.定义任意非叶子结点最多只有M个儿子;且M>2;
       2.根结点的儿子数为[2, M];
       3.除根结点以外的非叶子结点的儿子数为[M/2, M];
       4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
       5.非叶子结点的关键字个数=指向儿子的指针个数-1;
       6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
       7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
       8.所有叶子结点位于同一层;
       如:(M=3)
       B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
B-树的特性:
       1.关键字集合分布在整颗树中;
       2.任何一个关键字出现且只出现在一个结点中;
       3.搜索有可能在非叶子结点结束;
       4.其搜索性能等价于在关键字全集内做一次二分查找;
       5.自动层次控制;
       由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:
    
       其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
       所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
       由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;
B+树
       B+树是B-树的变体,也是一种多路搜索树:
       1.其定义基本与B-树同,除了:
       2.非叶子结点的子树指针与关键字个数相同;
       3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
       5.为所有叶子结点增加一个链指针;
       6.所有关键字都在叶子结点出现;
       如:(M=3)
   B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
       B+的特性:
       1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
       2.不可能在非叶子结点命中;
       3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
       4.更适合文件索引系统;
B*树
       是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
   B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);
       B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
       B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
       所以,B*树分配新结点的概率比B+树要低,空间使用率更高;
小结
       B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;
       B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;
       所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
       B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
       B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;
 
转自:
你可能感兴趣的文章
求职准备 - 收藏集 - 掘金
查看>>
htm5新特性(转)
查看>>
Linux-Centos启动流程
查看>>
php 设计模式
查看>>
后端技术精选 - 收藏集 - 掘金
查看>>
Laravel 服务容器
查看>>
mac安装kubernetes并运行echoserver
查看>>
多页架构的前后端分离方案(webpack+express)
查看>>
算法(第4版) Chapter 1
查看>>
前端技术选型的遗憾和经验教训
查看>>
“亲切照料”下的领域驱动设计
查看>>
SRE工程师到底是做什么的?
查看>>
解读:Red Hat为什么收购Ansible
查看>>
Ossim下的安全合规管理
查看>>
DelphiWebMVC框架下BPL热部署实现
查看>>
C++与MySQL的冲突
查看>>
siki学习之观察者模式笔记
查看>>
单元测试
查看>>
spring.net 继承
查看>>
ES6:模块简单解释
查看>>